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1. INTRODUCTION

The dynamic vibration absorber (DVA) is a very useful passive device that is used to
suppress narrowband vibration. It essentially consists of a mass, a spring, and a damper,
which are attached to a primary system subjected to vibration disturbance. In 1928,
Ormondroyd and Den Hartog [1] proposed the optimization principle of the damped DVA
in terms of minimizing the maximum amplitude response of the primary system. Following
this principle, Hahnkamm deduced the relationship for the optimum tuning of DVA [2]
and Brock developed the optimum damping [3]. This optimum design method of the
dynamic vibration absorber is called the "xed-points theory, which was well documented in
the textbook by Den Hartog [4].

In this paper, another form of dynamic vibration absorber is investigated. It is basically
an ordinary dynamic absorber. The only di!erence is that the damping element is not
connected to the structure to be controlled but to the earth (a base structure). This is
perhaps not a common usage for the dynamic vibration absorber, but it does bring
convenience in practice in some cases. A more interesting fact is that, as will be described in
the following, given the same mass ratio, this design of dynamic vibration absorber could
o!er a more e!ective control result over an ordinary design.

2. ORDINARY DYNAMIC VIBRATION ABSORBER

Figure 1 shows an ordinary dynamic vibration absorber attached to
a single-degree-of-freedom (s.d.o.f.) primary system. The primary system is undamped and
a viscous damper is assumed for the absorber. The response of the primary system can be
described in terms of the ratio of its vibration amplitude to the static deformation of the
system under sinusoidal excitation ( f"Fe jut). With X

st
"F/K, the amplitude response

was given as [4]
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Figure 1. The ordinary dynamic vibration absorber attached to a primary system.
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in which the parameters are de"ned as

j"u/JK/M, c"Jk/m/JK/M,

k"m/M, f"c/2 Jmk.

The optimum design of this absorber reads as follows [4]:
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where k"m/M is called the mass ratio. Equation (4) determines the optimum tuning
frequency of the absorber, and equation (5) de"nes the optimum damping. Under this
condition, the maximum ratio of the vibration amplitude to the static deformation of the
primary system reaches minimum, as follows:
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It should be pointed out that the above design parameters derived from the "xed-points
theory represent an approximate solution. Asami and Nishihara [5] have recently
developed a closed-form exact solution to this DVA optimization problem. But in this
paper, the "xed-points theory is used. In practice, many problems can be represented by an
equivalent s.d.o.f. system. Therefore, this design principle has found a wide variety of
applications in the engineering world.



Figure 2. The variant dynamic vibration absorber attached to a primary system.
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3. VARIANT FORM OF DYNAMIC VIBRATION ABSORBER

Figure 2 shows the variant form of the dynamic vibration absorber discussed in this
paper. The di!erence compared to the ordinary one is that the damping element is not
attached to the primary structure but to the earth (a base structure). This is perhaps not
a common layout for applying the dynamic vibration absorber, but it does bring
convenience in some cases in practice. Actually, the author had applied this form of DVA in
a practical consulting project.

Although the layout changes, it is found that the "xed-points theory still holds in this
case. The amplitude response of the primary system in this case reads
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where

p"(c2!j2)2#(2fcj)2, (8)

q"[(1!j2)(c2!j2)!kc2j2]2#(2fcj)2 (1#kc2!j2)2. (9)

Following the similar approach of reference [4], the optimum tuning condition and the
optimum damping can be deduced as
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The maximum response amplitude of the primary system reaches minimum under this
condition as
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For an easy reference, Appendix A gives the details in deducing these relations.



Figure 3. The amplitude response of the primary system with an optimally tuned ordinary absorber (**) and
with the new absorber ()))))) under the same mass ratio of 0)1.
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4. DISCUSSION

Equation (10) suggests that the absorber is tuned to a certain percentage above the
operating frequency while an ordinary design (equation (4)) suggests that the absorber is
tuned to a certain percentage below the operating frequency. As to the optimum damping,
the new type of absorber suggests a damping coe$cient that is a little bit higher than the
ordinary one (equation (11) versus equation (5)). The most interesting comparison comes
between equations (12) and (6). For the same mass ratio, it can be seen that equation (12)
will give a lower vibration level than equation (6). For example, for k"0)1, the di!erence
will be about 1)1 dB; for k"0)2, the di!erence will be 2)4 dB. That is to say, without
increasing the additional mass, the vibration level can be suppressed more e!ectively by
employing the new design of the dynamic vibration absorber. In Figure 3 is shown the
di!erence of the amplitude response of the primary system with an optimally tuned normal
absorber and the new type absorber under the same mass ratio of 0)1.

5. CONCLUDING REMARKS

In this article, a new layout of a dynamic vibration absorber was proposed and its
optimum design principles were developed. It is shown that by connecting the damping
element of the absorber to the earth (a base structure), the vibration of the primary structure
can be a little more e!ectively suppressed than by using an ordinary DVA of the same mass
ratio. Although this layout is not a common usage for the DVA, it is believed that it may
bring convenience in certain conditions.
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APPENDIX A

In Figure 2, the motions of the primary system and the dynamic vibration absorber are
governed by the following equations:
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Assuming a harmonic disturbing force f"Fe jut, the responses may be written as
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Therefore, equations (A1) and (A2) become
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Solving these equations yields
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Multiplying the numerator and denominator inside the root square of equation (A6) with
(K/M)~4, and introducing the following parameters:
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one obtains

K
X

1
X

st
K"S

p

q
, (A7)



Figure A1. The responses of the primary system under k"0)1 and c"1)1.**, f"0;**, f"0)1; } ) } ) } ) } ,
f"0)25; } )) } )) } , f"0)4; } }} , f"0)8; ))))), f"10.
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where

p"(c2!j2)2#(2fcj)2, (A8)

q"[(1!j2)(c2!j2)!kc2 j2]2#(2fcj)2 (1#kc2!j2)2. (A9)

Equation (A7) de"nes the response magnitude of the primary system with the absorber.
For given k and c, the response can be calculated. In Figure A1, the results under k"0)1
and c"1)1 are shown. To demonstrate the characteristics, the results in several cases of
damping coe$cient (f) are given in this "gure. It is clearly seen that there exist two common
points (P and Q) on all the curves, where the responses are not in#uenced by the damping.
These points are referred to as the "xed points. The optimum condition of the dynamic
vibration absorber can be achieved by adjusting the responses at P and Q to the same level
(optimum tuning), and meanwhile making P and Q the maximum points on the response
curves (optimum damping). This design principle is the well-known "xed-points theory [4].
In the following, this theory will be utilized to develop the optimum design laws of the
absorber under study.
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Under the condition A/C"B/D,
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will be independent of the damping coe$cient f. Considering the fact that
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the condition A/C"B/D implies the crossing points of curves DX
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. By examining equation (A5), it is not di$cult to "nd that the responses at
f"0 and R are in opposite phase, therefore, the "xed points can be solved from the
following equation:
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Manipulating equation (A15) yields
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Comparing equations (A16) and (A17), one obtains
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In order to reach the optimum tuning, the responses at P and Q should be the same,
therefore
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that is
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From equations (A18) and (A20) the optimum tuning condition is obtained as
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The points P and Q under this condition are determined by
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In the above, the optimum tuning condition was deduced. The next step will be to
determine the optimum damping in order to make points P and Q the maximum points on
the response curve. The condition of points P and Q being the maximum means that the
response curve should pass through the two "xed points with a horizontal tangent, that is
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In another form
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where, p@"Lp/Lj2 and q@"Lq/Lj2.
Under the optimum tuning condition
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Solving this equation for f2 one obtains
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Substituting equations (A21, A23, A24) into the above equation results in the optimum
damping as
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Figure A2. The responses of the primary system under optimum tuning, k"0)1, c
opt

"1)0541. **, f"0;
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Obviously, with the approximation involved in equation (A35), one cannot exactly make
points P and Q as the maximum points of the response curve. Nevertheless, this
approximation does not in#uence the usefulness of the result as a simple design law.
Figure A2 shows the response curves under the optimum tuning condition derived herein.
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